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Electron correlation on metallic surfaces 
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Department of Physics. lbkyo Gakugei Univenity, Koganei, TbQo 184, Japan 

Received 5 July 1991 

AbslracL Eleclron correlation on metallic surfaces Ls studied for the fin1 time with the 
use of lhe slave-boson functional integral melhod. The ground-state properlies of the 
semi-infinite simplecubic model in the nonmagnetic state are investigated. The double 
occupancy, 6,, and the band MKOWing faolor, gn, on layer n are calculated as a function 
of the eleclron interaction. I1 is shown that 61 and ‘11 on the surface show a peculiar 
behaviour depending on the ratio U,/U, where Ut (U,) denotes the interaction on the 
surface (in (he bulk). 

1. Introduction 

The study of electron correlation has been one of the most interesting subjects in 
solid-state physics. The effect of electron correlation in the Hubbard model has been 
investigated by using various approaches (Gutmiller 1963, Hubbard 1964, Kanamori 
1963). Quite recently, Kotliar and Ruckenstein (KR) (1986) proposed the slave-boson 
functional integral method which has various advantages. The simplest saddle-point 
approximation to the KR method leads to the Gutmiller approximation (Gutmiller 
1963). The KR method can be applied not only to the ferromagnetic state but also 
to the antiferromagnetic state (Kotliar and Ruckenstein 1986, Hasegawa, 1989a, b, 
1990a). It yields very accurate results when compared with exact results obtained by 
Monte Carlo simulations (Yokoyama and Shiba 1987a, b, Lilly et a1 1990). Fluctua- 
tions around the saddle-point solution in the KR method lead to a result consistent 
with that obtained in the random phase approximation (Rasul and Li 1988, Li et 
al 1989). The effect of electron correlation at finite temperatures is discussed by 
combining the KR method with the alloy-analogy approximation (Hasegawa 1989a, 
1990a). Thus, the KR method is a promising and useful approach to the study of 
electron correlation, and has a wide applicability. 

During the last decade there has been considerable progress in our theoretical 
understanding of surface properties, particularly of transition metals (for a review 
see Freeman er a1 1985). The electronic structures of transition-metal surfaces have 
been calculated by using the first-principles local density functional (LDF) method 
or by using the realistic tight-binding model. These approaches have been very 
successful in explaining not only bulk properties but also surface properties. In these 
methods, however, the many-body effect is not properly taken into account, though 
the LSD method includes it in the form of a suitably averaged oneelectron exchange- 
correlation potential. One of the examples showing the importance of its effect is 
the fact that the d-band width of bulk Ni observed by the photoemission experiment 
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is reduced by 25% compared to the value calculated with the LDF method (Himpsel 
ef al 1979). This kind of many-body effect is expected to be more significant in the 
calculations of surface bands than in those of the bulk, because the effect of electron 
correlation on the surface is greater than in the bulk. It is desirable to include the 
many-body effect more correctly in the band calculation of the surface. It is the 
purpose of the present paper to study the effect of electron correlation on a metallic 
surface by using the KR method. This is the first step going beyond the conventional 
approximations. As will be shown shortly, electron correlation on a metallic surface 
is much more involved than that in the bulk. 

The paper is organized as follows. In the next section we describe an application 
of the KR method to the surface-related subject. A numerical calculation is presented 
in section 3, where the effect of electron correlation in the nonmagnetic semi-infinite 
simple-cubic model is discussed. A summary and supplementary discussions are given 
in the final section. 

2. Formulation 

We adopt the semi-infinite simple-cubic model with a (001) surface (Hasegawa 199Ob). 
The layers parallel to the surface are assigned by the index n, which is 1 for the top 
surface layer. The system is described by the Hubbard Hamiltonian given by 

H = ~ ~ E ; C ~ ~ C ; ~  + ~ ~ l ; j c { , c j u  + zu;nitn;, (1) 
u i  U i , j  

where c!,, ( c j u )  is a creation (annihilation) operator of a o-spin electron on the 

interaction, U;, are assumed to be E,, and Um, respectively, if the site i belongs to 
the nth layer. The hopping integrals, tij, are assumed to vanish when the site i or j 
is located outside the surface. 

The model Hamiltonian given by (1) was used by many authors to investigatc 
surface properties within the Hartree-Fock approximation pkayama ef al 1974, 
Weling 1980). We will take into account the effect of electron correlation, which 
has been neglected so far, by using the KR functional integral method. Since an 
application of the KR method to the surface problem goes almost parallel to that of 
the bulk case, we briefly describe it. Kotliar and Ruckenstein (1986) introduced four 
boson fields which act as projection operators onto the empty, singly occupied sites 
with spin CT (=t and L), and doubly occupied states at a given site. By performing the 
functional integral in terms of the boson fields and employing a change of variables 
(Kotliar and Ruckenstein 1986, Hasegawa 1989a), we get a partition function given 

lattice site i, and n;, = c;,c;, t . The core potential, E i ,  and the electron-electron 

by 

Z = DcDmDvDnD6exp(-PS) (2)  J 
with 

exp(-PS) =exp[-PC(U;6;  t Simi - vj)] 'J3exp(-PxH0) (3) 
i U 
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where Dm = &mi etc, mi is the magnetic moment, ni the number of electrons, Ei 
the exchange field, vi the charge field and 6, is the double occupancy at site i. The 
effective Hamiltonian for a U-spin electron, H,, shows that the hopping integral, t i j ,  
is reduced by a factor (qi,qj,)l/z, where piu is the band-narrowing factor given by 

gin = 2{[(ni  + umi -26,)(1-  n, + 6;)]'/' + [6,(n; - um; - 26,)]  1/2 2 } 

(5)  x [(n; + 0mi ) (2  - ni - umi) ] -  1 . 

The total energy is thus given by 

where ti,, c,, Y,, m,, and n, are expectation values on the layer n determined by 
the following simultaneous equations (Hasegawa 1989a): 

U, + C(mn,/wR,, = 0 (7) 
U 

with 

Here f ( c )  is the Fermi distribution function, and 0 and 3 are effective Coulomb and 
exchange interactions, respectively. We allow the expectation values of X,, (= 6, 
etc) on the fusr N layers to be different from ,U, (= 6, etc) in the bulk, by imposing 
the following boundary conditions: X, = X,, at n = N + 1. Bulk and surface 
quantities are hereafter expressed by the subscript b and s, respectively. The site- 
diagonal Green function, Pnu( z ) ,  is evaluated by using the transfer-matrix method 
(Falicov and Yudurain 1975). 
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3. Calculated results 

We consider the non-magnetic ground state of the half-filled simple-cubic model with 
nearest-neighbour hopping. For the bulk the double occupancy, 6,, and the band 
narrowing factor, qb, are simply given by (Gutnviller 1963, Brinkman and Rice 1970) 

46, = 1 - &,/U, qb = 86b( 1 - 26,) = 1 - (Ub/Uk)’  (15) 

where U, = 8(&l, & being the ground-state energy of the bulk with U = 0. 
As for 6, and q,, for arbitrary n, we solved the self-comistent equations given 

by (5)-(14). assuming the configuration with N = 2 The surface core potential, E,, 
was adjusted to preserve local charge neutrality. The interactions were chosen as 
U, = U, = U and U, = aU. For a given a value, we performed calculations by 
changing U. 

Figures I(a) and (b)  show 6, and qn against the layer index, n, for various U, 
which is measured in units of a half width of the bulk band for U = 0. Results for 
n = 1, n = 2 and n 2 3 denote those for the surface, sublayer and bulk, respectively. 
Full (broken) curves show the results for a = 1.0 (a = 0.8). In the case of a = 1.0, 
calculated 6, and q, on the surface are always smaller than those in the bulk, while 
results for the sublayer are almost the same as those in the bulk. This means that 
the effect of electron correlation on the surface is more significant than in the bulk. 
In the case of a = 0.8, 6, and q, become larger than those in the bulk because of 
the weakened surface interaction. 
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F@m I. Profiles of ( a )  the double w p a n c y ,  b., and ( 6 )  the band narmwing factor, 
qn, lor various U values for P = 1.0 (full c u m )  and oi = 0.8 (broken curves). 

The U dependences of the double occupancy and the band narrowing factor for 
a = 1.2,1.0,0.8 and 0.6 are shown in figures 2 ( a ) - ( 4 .  Broken curves show results 
for the bulk, which is given analytically by (U). We note that 6, and q, vanish 
when U exceeds U,, which is a critical interaction for the metal-insulator transition 
(Brinkman and Rice 1970). Full curves show the results for the surface, exhibiting a 
peculiar behaviour. 
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First we consider the case of a = 1.0, which means U, = U, = U. Figure 2@) 
shows that, when the interaction is small, 6, and q, follow chain curves given by 

46, = 1 - ( a U / U , )  q, = 1 - (aU/U,)*  (16) 

which vanish at a characteristic interaction, aU = U,, defined by U, = 81E,I, E#, 
being the surface contribution to the total energy for U = 0. When aU approaches 
U,, 6, and q, have a different U dependence, remaining finite at aU = U,. They 
gradually decrease at U,/a < (I < U, and vanish at U 2 U,. Usually U, 
is smaller than U, (our model leads to U, = 2.420 and U, = 2.679). since the 
surface density of states for U = 0 is narrower than the bulk density of states because 
of missing bonds on the surface. The U dependence of 6, and q, shows a crossover 
when aU approaches and exceeds U,. 

In the case of a = 0.8, the U dependence of 6, and q, exhibits a different 
behaviour, as shown in figure 2(c). When aU < U,, 6, and q, follow chain curves, 
as in the case of Q = 1.0. When U approaches U,, however, they show a new 
(1 - U/U,)r/Z dependence near U, and vanish at U > U,. Thus the behaviour of 
6, and q, near U, for a = 0.8 is different from that for a = 1.0. We found that 
this transition occurs at a critical value of a, defined by a" = E,/E, (= 0.903 in 
our model). When a = a,,, the U dependence of 6, and q, for all R almost obey 
expressions similar to (U) or (16). 

When a is further decreased to be less than the critical value of a, = U,/lJ, 
(= 0.78 in our model), 6, and q, are found to show an interesting behaviour: the 
surface may be metallic on an insulating substrate (bulk). Here U, = SIEsrl is the 
characteristic interaction relevant to the metal-insulator transition of the N-layer film 
which is effectively isolated from the insulating substrate (bulk), Em being its non- 
interacting energy. The result for a = 0.6 is shown in figure 2(d) .  We note that the 
metallic state on the surface actually persists even at U > U, where 

46, = 1 - ( Q U / U , )  q, = 1 - ( a U / U , ) 2  (17) 

while the bulk is insulating (6, = qb = 0). 
We expect from physical considerations that, when U, = aU > U,, and U, = 

U < U,, the surface may become an insulator on metallic surfaces (6, = 0,6, # 0). 
We found, however, that this is not realized in our calculation. A numerical example 
for a = 1.2 is plotted in figure 2(a). In the region of U,/& < U < U,, 6, and q, 
become very small, though they remain finite. This is because the surface density of 
states is broadened by electron hopping from the metallic substrate (bulk). 

Similar calculations have been performed by changing a and U. Figures 3(a)  and 
(b )  show the calculated phase diagram in the U-a and U,-U, planes, respectively. 
The numerical calculations reported above were performed along thin lines in fig- 
ure 3(b) denoting U, = aUb with a = 0.6-1.2 We have the three phases, A, B and 
C. In the A phase both the surface and the bulk are metallic (6, # 0,6, # 0), and in 
the C phase they are both insulators (6, = 0,6, = 0). However, in the B phase the 
surface is metallic but the bulk is an insulator (6, f; 0,6, = 0). The B and C phases 
are separated from the A phase by the line U, = U = Uk. The boundary between 
the B and C phases is given by U, = aU = Ufc. In a part of the A phase above the 
dotted curve denoting U, = aU = U,, 6, and q, are finite but fairly small. 

The densities of states on the surface, sublayer and bulk for the three cases are 
shown in figures 4(a)-(c). In the  case of (a) U = 0, the band narrowing factors 
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F a r e  3. The phase diagram of the nonmagnetic half-filled band in (a) the U-n 
plane and ( b )  the Ub-Ut plane. The three phases, A, B and C, are characterized by 
A (61 # O , &  # 0). B (61 # 0,6b = 0) and C ( 61 = 0,6b = 0). The dotted cuwe 
expresses U, = nu = U,, above which 61 and q1 are finite but ve'y small (see text). 
Thin full CUNG denote Ut = nub with fixed n values. 

are q1 = q2 = qb = 1.0, and the densities of states are the same as those obtained 
previously (Kaktein and Soven 1971). In the case of (b) U = 2.4 and (Y = 1.0, we 
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4. Summary 

We have discussed the effect of electron correlations on metallic surfaces by using 
-the KR method (Kotliar and Ruckenstein 1986). Our calculation has demonstrated 

that electron correlation on the surface shows much more variety than that in the 
bulk. Although we adopted a simple system with N = 2 in the model calculation, 
our essential conclusion would not be modified for systems with larger N. We note 
that the behaviour of 6, and q1 on the surface depends on the ratio o( = U,/&. 
This situation is similar to the molecular-field theory of the Heisenberg model for 
free surfaces (Binder 1983), in which surface magnetization and its critical exponent 
depend on the ratio of J,/J,, J,( Jb) being the exchange interaction on the surface (in 
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the bulk). In the present calculation, we changed U for a given value of a = U,/ U,. 
We may allow the surface potential, E,, and surface hopping integrals, d , ,  to be 
different from those in the bulk. These add more variety to the study of electron 
correlation on metallic surfaces. 

It is well known that the half-filled band favours the antiferromagnetic state more 
than the non-magnetic one. Monte Carlo simulations (ICaplan et ul 1982, Yokoyama 
and Shiba 198%) and analytical calculations (Hasegawa 1989a) for the bulk show 
that when the antiferromagnetism is taken into account, neither 6, nor qb vanish 
as long as U is finite. This is also expected to be the case in our calculation if 
antiferromagnetism is included: both 6, and 6, remain finite as long as U, and 
U, are finite. One of the interesting effecn of electron correlation is that it works 
to surpress long-range order on the surface and in the bulk. Although calculated 
magnetic moments on Fe, Ni and Cr surfaces are reported to be much enhanced 
compared with the bulk (Freeman er ul 1985), it is possible that surface moments ' 
may be reduced from the calculated values if we take into a m u n t  the effect of ' 
the electron correlation, which is neglected in the conventional band calculations. 
Calculations of surface moments including the effect of electron correlation are in 
progress, and will be reported elsewhere. 
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